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CHAPTER 4

Visual awareness and the cerebellum: possible role of
decorrelation control

Paul Dean*, John Porrill and James V. Stone

Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK

Abstract: The two roles in awareness most often suggested for the cerebellum are (i) keeping the details of motor skills

away from forebrain computation, and (ii) signaling to the forebrain when a sensory event is not predictable from prior

motor commands. However, it is unclear how current models of the cerebellum could carry out these roles. Their

architecture, based on the seminal ideas of Marr and Albus, appears to need ‘motor error’ to learn correct motor

commands. However, since motor error is the difference between the actual motor command and what the command

should have been, it is a signal unavailable to the organism in principle. We propose a possible solution to this problem,

termed decorrelation control, in which the cerebellum learns to decorrelate the motor command sent to the muscles

from the sensory consequences of motor error. This method was tested in a linear model of oculomotor plant

compensation in the vestibulo-ocular reflex. A copy of the eye-movement command was sent as mossy-fiber input to the

flocculus, represented as a simple adaptive filter version of the Marr–Albus architecture. The sensory consequences of

motor error were retinal slip, delivered as climbing fiber input to the flocculus. A standard anti-Hebbian learning rule

was used to decorrelate the two. Simulations of the linearized problem showed the method to be effective and robust for

plant compensation. Decorrelation control is thus a candidate algorithm for the basic cerebellar microcircuit, indicating

how it could achieve motor learning using only signals available to the system. Such learning might then enable the

cerebellum to free up visual awareness, and also, by providing a sensory signal decorrelated from motor command,

supply awareness with crucial information about the external world.

Introduction

Those of us fortunate enough to have worked with

Alan Cowey in the laboratory are aware of both his

practical skills and his helpfulness. But the example

set by Alan extends beyond the laboratory. Anyone

who has read his account of global stereopsis in

rhesus monkeys (Cowey et al., 1975) will know about

the cunning those animals use to seize on cues the

experimenter did not intend them to employ. They

will also be aware of this particular experimenter’s

ability not to be taken in by plausible though attrac-

tive explanations of his subjects’ performance, to think

of alternative although unwelcome explanations,

and to pursue the evidence needed to find the

explanation that is correct. This approach in its

combination of intellectual honesty and acuity has

similarities to that immortalized in the great fictional

detective, Sherlock Holmes, and is just as relevant

to theoretical investigations of neural function as

it is to experiments in the laboratory. And it is

with theoretical studies, specifically with computer

modeling of cerebellar function, that this present

contribution deals.

The cerebellum and visual awareness

A long-standing view of cerebellar function concerns

its ability to free the forebrain from the detailed

calculation required to generate accurate movement.
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An early formulation was by Brindley in 1964:

‘‘the message sent down by the fore-brain

in initiating a voluntary movement is often

insufficient . . . it needs to be elaborated

by the cerebellum in a manner that

the cerebellum learns with practice . . .The

cerebellum is thus a principal agent in the

learning of motor skills.’’ (Brindley, 1964).

This idea has been particularly influential in

guiding cerebellar modeling:

‘‘. . . the cerebellum becomes rather more

than a slave which copies things originally

organized by the cerebrum: it becomes an

organ in which the cerebrum can set up

a sophisticated and interpretative buffer

language between itself and muscle.

This . . . leaves the cerebrum free to handle

movements and situations in a symbolic

way without having continually to make

the translation.’’ (Marr, 1969) p. 468.

From this perspective, the cerebellum fulfils a

role similar to that of a certain kind of computer

operating system: easy-to-use high-level commands

are translated into the requisite machine language.

It is the cerebellum that makes the body user-friendly.

An intuitive mapping of this idea onto the field

of awareness suggests that without a cerebellum,

much of our conscious thought would be spent in

making sure we did not fall over, in planning how

to set one foot in front of another, and in working out

how to move our eyes to look at the next target

of interest in the visual scene. But since the cerebellum

learns to execute such skills automatically, awareness

is spared the necessary detailed planning, and is at

liberty to focus on our internal representations of the

visual world. In reading, for example, the cerebellum

allows awareness of the meaning of the text to be

unsullied by complex planning of the next saccade.

This is not, however, the only suggestion con-

cerning the role of the cerebellum in awareness. A

number of workers have been at pains to emphasize

that the cerebellum is not only (or even primarily)

involved in motor functions, but instead plays a

role in the acquisition and analysis of sensory input

(Paulin, 1993; Bower, 1997). For example, the

cerebellum may help to clarify whether a given

stimulus results from the system’s own movements,

or whether instead it is unexpected and hence of

external origin (Blakemore et al., 2001; Nixon and

Passingham, 2001). Thus, the cerebellum has been

implicated in our inability to tickle ourselves

(Weiskrantz et al., 1971; Blakemore et al., 2000).

Again, mapping these notions loosely onto the field

of awareness suggests that the cerebellum might act

as a kind of gatekeeper which reduces the salience of

stimuli that were in some sense to be expected.

Problems with models of the cerebellum

A minimal requirement for the plausibility of these

suggestions about cerebellar roles in awareness is

that models of the cerebellum are capable of carrying

out the necessary calculations. Unfortunately, it is

far from clear that this is in fact the case. As

a background to understanding the problems of

cerebellar models, it is helpful to recall some very

basic features of the anatomy and physiology of

cerebellar cortex (Eccles et al., 1967; Kandel et al.,

2000).

Background to cerebellar models

Cerebellar cortex has only one type of output cell,

namely the Purkinje cell (schematic in Fig. 1),

distinguished by its spectacular dendritic field.

Purkinje cells receive two types of excitatory inputs,

delivered by mossy fiber and climbing fiber afferents

to cerebellar cortex. Mossy-fiber synapses contact

granule cells, the most numerous neuronal cell type in

the entire brain, whose axons ascend to the surface of

the cortex then bifurcate to become parallel fibers.

Both ascending axons and parallel fibers form

excitatory synapses on Purkinje cells, which cause

the cell to fire normal (termed ‘simple’) spikes at

tonic rates of about 100 Hz. An individual Purkinje

cell will receive input from many thousands of

granule cells: in contrast, it is contacted by only

one climbing fiber. However, this fiber wraps itself

around the dendritic tree of the Purkinje cell, forming

multiple synapses that ensure the Purkinje cell

fires whenever the climbing fiber does. The ‘complex’
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spike so produced is longer lasting than the usual

simple spikes, but occurs much less frequently

(about 1 Hz).

Since many current cerebellar models are in effect

descendants of the original models of Marr (1969)

and Albus (1971), they tend to explain the above

features of cerebellar cortex in similar ways (Fig. 2).

(1) Decomposition of mossy-fiber inputs. The trans-

formation of mossy-fiber input into parallel fiber

activity is seen as splitting the input signal into

simpler components. These simpler components

make learning easier.

(2) Recombination of parallel fiber signals. Syn-

apses between parallel fibers and Purkinje cells

are seen as ‘weighting’ signal components. The

Purkinje cell simple spike output is generated

from these weighted components.

(3) Weights altered by climbing fiber signals.

Climbing fiber input is seen as altering the

values of these weights, i.e. the parallel-fiber

Purkinje-cell synapses. Climbing fiber input acts

as a teaching signal, enabling the cerebellum to

be involved in motor learning. This idea can in

principle explain both the power of the climbing

fiber input (all parallel fiber synapses must be

affected) and its relative weakness (very low

frequency of complex spikes, so the output of

Purkinje cell is scarcely affected).

Shortcomings of cerebellar models

Why does this type of model have problems

producing the kind of cerebellar behavior required

for the interactions with visual awareness described

above? As far as signaling unexpected sensory events

is concerned, Marr–Albus-type models have tended

to concentrate on the motor aspects of cerebellar

function (cf. the quotation from Marr above).

Possible sensory functions of the cerebellum have to

some extent been neglected.

However, even within the motor domain, it is

not clear whether the Marr–Albus type of model

actually works. Marr expressed this problem in

general terms:

‘‘In my own case, the cerebellar study . . .

disappointed me, because even if the

theory was correct, it did not enlighten

one about the motor system — it did not,

for example, tell one how to go about

programming a mechanical arm.’’ (Marr,

1982) p. 15.

More particularly, a grave disadvantage of some

versions of these models is that they appear to require

‘motor error’ as teaching signal. This is a generic pro-

blem of supervized learning algorithms, employed,

Fig. 2. Interpretation of simplified cerebellar circuitry in

Marr–Albus framework. Mossy-fiber input y(t) is split into

components yi(t) that are conveyed by parallel fibers. Each

component is weighted by wi which corresponds to the efficacy

of the synapse between that parallel fiber and the target

Purkinje cell. The weighted components are summed to produce

Purkinje cell output. The value of each weight can be altered by

climbing-fiber input e(t), which acts as a teaching signal.

Fig. 1. Highly simplified sketch of the neural circuitry of

cerebellar cortex, showing only the main excitatory inputs to

Purkinje cells.
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for example, with multilayer artificial neural

networks. Supervision takes the form of telling the

net what the difference was between its output and

the correct output. In the case of motor commands,

this difference (between the actual motor command

and the correct command) is termed motor error.

Using motor error as the teaching signal conveyed by

climbing fibers allows Marr–Albus models to learn

correct motor commands.

Unfortunately, a motor-error signal does not exist

in practice, because the system cannot know in

advance what the correct motor commands should

be. Perhaps not surprisingly then, experimental

investigations of climbing fiber signals suggest that

they are often sensory (concerning, e.g. touch, pain)

rather than motor in nature (Simpson et al., 1996).

How can the model learn the correct commands with

only sensory information as a teaching signal?

Decorrelation control as a possible solution

Decorrelation control has been suggested as a

possible algorithm for the cerebellum to solve both

the sensory and the motor problems (Dean et al.,

2002). It replaces motor error as a climbing fiber

signal by ‘sensory error’, that is the sensory

consequences of an incorrect motor response. For

example, poor aim in tennis sends the ball in an

unintended direction: the difference between actual

and intended direction is a form of sensory error.

(Motor error would be the difference in command to

the arm muscles required to move the racquet in the

necessary manner for accuracy.) The crucial point

about sensory error is that, in sharp contrast to

motor error, it could be available to the system —

visually, in the tennis example. But how could

sensory error be used in learning?

By definition, sensory error is caused by motor

error. Values of the relevant sensory variable (e.g.

in the tennis case, direction taken by ball in relation

to intended direction) will therefore be correlated

with preceding motor commands, if those commands

are incorrect. If, however, the commands are correct,

there will be no correlation between the commands

and the sensory variable. In tennis, deviations

between intended and unintended ball flight might

be caused by sudden gusts of wind, but would in that

case be uncorrelated with motor commands. The

purpose of decorrelation control is therefore to

remove any correlations between motor command

and the variable that codes sensory error.

Decorrelation control thus requires that some

mossy-fiber inputs (Figs. 1 and 2) carry information

relating to the motor command, for example an

efference copy. It also requires climbing fibers to

carry information about the undesirable sensory

consequences of motor commands. Finally, it uses

the following as a learning rule:

(i) If parallel-fiber firing is positively correlated

with climbing-fiber firing, reduce the weight of

the parallel-fiber synapse with the Purkinje cell

(LTD).

(ii) If parallel-fiber firing is negatively correlated

with climbing-fiber firing, increase the weight

of the synapse (LTP).

(iii) If parallel-fiber firing is uncorrelated with

climbing-fiber firing, do not change the

synapse.

Although this rule may appear complex, its basic

equation is simple.

�!i ¼ ��eðtÞyiðtÞ ð1Þ

The change (�wi) in the weight (wi) of the synapse

between the ith parallel fiber and the target Purkinje

cell is proportional (with learning-rate constant �) to

the product of the sensory error e(t) (climbing-fiber

signal) and the signal in the ith parallel fiber yi(t) (all

signals expressed as differences from their tonic

levels). The equation is based on Sejnowski’s (1977)

characterization of anti-Hebbian learning at the

parallel-fiber Purkinje-cell synapse as a covariance

learning rule. It can be seen that learning will stop

(�wi¼ 0) if the expected value of the product of the

climbing-fiber signal e(t) and the parallel-fiber signal

yi(t) becomes zero, that is when there is no correlation

between e(t) and yi(t). If the parallel-fiber input

represents a component of motor command, learning

will cease when that component is decorrelated from

sensory error.

If the decorrelation-control algorithm were to

work, the cerebellum would be able to learn correct

motor responses by using an available sensory signal

(consequences of motor error), not the unavailable

64

ARTICLE IN PRESS

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192



UNCO
RRECTED

PRO
O

F

signal of motor error itself. After learning, the

sensory signal would be uncontaminated by the

system’s own motor commands, and would therefore

signal ‘unexpected’ sensory events. The algorithm

would therefore fulfil both the putative roles of the

cerebellum in relation to awareness.

Testing decorrelation control

A model of a neural process needs to pass at least two

types of test:

(i) Can it carry out the required computation?

(ii) Is it consistent with experimental evidence?

There has been extensive debate concerning the

relation of Marr–Albus-type models to the detailed

anatomy and physiology of cerebellar cortex (for

reviews, see Llinás and Welsh, 1993; Ito, 2001). The

approach taken here is to focus on the first test,

namely whether the decorrelation-control algorithm

has the required computational power. This approach

in effect asks the question if the basic Marr–Albus

ideas are a reasonable simplification of cerebellar

physiology, then would decorrelation control work.

As far as the second kind of test is concerned, enquiry

will be limited to the issue of whether the inputs to

cerebellar cortex that are required by decorrelation

control (see above) are observed experimentally.

The computational problem facing the decorrela-

tion-control algorithm is implicit in Eq. (1). Although

learning will in fact cease once motor command and

sensory error are decorrelated, the question is

whether this state of affairs could ever be reached in

practice. If in Eq. (1) the term e(t) were to refer to the

difference between actual and desired cerebellar

output (motor error), the learning rule would

(under certain restrictions) be guaranteed to find the

values of the weights wi (Fig. 2) that gave the best

(least-squares) estimate of cerebellar output.

However, the term e(t) in Eq. (1) in fact refers to

sensory error, that is the effects of cerebellar output

after it has been altered by the mechanical properties

of the system under control (summarized by the term

‘plant’). Cerebellar cortex does not receive the infor-

mation, namely motor error, required to guarantee

learning (details in Dean et al., 2002). The first test

for the decorrelation-control algorithm is thus

whether it is capable of dealing with the kind

of plant characteristics that have been observed

experimentally.

Oculomotor plant compensation

We chose the oculomotor system to test decorrelation

control on the grounds that, compared with the

skeletal motor system, its mechanical properties are

relatively simple, and because a great deal is now

known about the anatomy and physiology of its

low-level control circuitry.

It appears that the inputs to this circuitry take the

form of eye-velocity commands. However, ocular

motoneuron output has to act on the eye muscles

and orbital tissue (the ‘plant’ referred to above).

The mechanical characteristics of the plant mean that

a simple velocity command does not generate the

corresponding velocity output (Carpenter, 1988).

This can be seen in Fig. 3A which illustrates a very

simple approximation to the oculomotor plant.

Although the inertia of the globe can be ignored for

most purposes, the plant still has elasticity as well as

viscosity, represented in Fig. 3A by a single elastic

element in parallel with the viscous element. This

elasticity distorts the velocity command, as shown in

Fig. 3B. Here a brief velocity command, similar to

that used to produce saccades, moves the eye rapidly

to a new position. But although the velocity

command after the brief pulse is zero, the eye

nonetheless moves, because the elastic element pulls

the eye back to the primary position. Figure 3B

shows the resultant exponential drift of eye position,

with time constant determined by the relative values

of the elasticity and viscosity. In the example

illustrated, the time constant is about 200 ms.

Prevention of this unwanted drift requires a

mechanism for producing the desired velocity output

(velocity in¼ velocity out). This mechanism is some-

times termed ‘oculomotor plant compensation’,

though in the oculomotor literature it is often

referred to as ‘neural integration’ since that is the

process required for a first-order plant as illustrated

in Fig. 3B. Two important features of oculomotor

plant compensation qualify it as a suitable task for

testing the decorrelation-control algorithm.

First, there is good evidence that oculomotor plant

compensation requires the cerebellum. Lesions of the
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cerebellum that include a particular region produce

a postsaccadic drift back to the primary position

similar in appearance to that shown in Fig. 3B,

though with a longer time constant of about 1–2 s

(Carpenter, 1972; Robinson, 1974; Zee et al., 1981;

Godaux and Vanderkelen, 1984). (We use the term

flocculus for this region for simplicity, though the

adjacent ventral paraflocculus is also likely to be

involved). Secondly, the velocity in–velocity out rule

can be regarded as an example of the ‘elaboration’

of an insufficient motor command, the generic

cerebellar function proposed by Brindley (1964) in

the quotation given above.

Structure of model

The process of learning oculomotor plant compensa-

tion requires a source of velocity commands. A

suitable source is provided by the vestibulo-ocular

reflex (VOR), in which movements of the head send a

velocity signal through the brainstem to the eye

muscles. The goal of the reflex is to reproduce these

velocity commands (with appropriate sign) so that

the eyes counter-rotate to maintain stable gaze. If

this goal is not achieved, the eyes move relative to

the world, and so the whole image moves over the

retina, a movement known as ‘retinal slip’. Retinal

slip is the sensory error corresponding to the

motor error in eye-movement commands for gaze

stabilization.

The structure of the VOR model is shown in

Fig. 4, and a more detailed description is given in the

Appendix. The general problem of VOR control was

Fig. 4. Simplified model for plant compensation in vestibulo-

ocular reflex. Head velocity x(t) is processed by the filter V, then

added to the output c(t) of the decorrelator (cerebellar

flocculus) C. The summed signal is then passed to a brainstem

controller B. The output of B is a motor command y(t), which

acts on the plant P. A copy of y(t) is sent back to the cerebellum

C. The effects of y(t) acting on P are added to the head velocity

x(t); the difference is detected as retinal slip e(t) and sent to C. If

there is no external visual signal acting on the eye, the desired

value of e(t) is zero. This will occur when the effects of the eye-

movement command y(t) acting on the plant P exactly match

those of the head velocity x(t) (from Dean et al., 2002).

Fig. 3. (A) Simple model of oculomotor plant, consisting of an elastic element (with elasticity k with dimensions of force and

distance�1) in parallel with a viscous element (viscosity b with dimensions of force and velocity�1). The inertia of the eyeball is ignored.

(B) Behavior of plant illustrated in A upon release from a position 1� from the resting position. The time course of the return to the

resting position is an exponential decay, with a single time constant given by b/k (in example shown here,¼ 0.2 s).
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simplified in three ways. First, only the horizontal

reflex was considered. Second, it was assumed that

each component process within the model was

linear. These components are the brainstem (B), the

cerebellum (C), the oculomotor plant (P), and a

process (V) for transforming head velocity into a

neural signal. Third, it was assumed that V was

veridical (i.e. V¼ 1).

The model of the cerebellar flocculus C received

two inputs. One was a copy of the eye-movement

command sent to the extraocular muscles, the other

the retinal-slip signal. These are the inputs required

by the decorrelation control algorithm, with the

command copy as mossy-fiber input to be decorre-

lated from sensory error as climbing fiber input. It

is important to note the extensive anatomical and

physiological evidence supporting the existence of

these inputs (Lisberger and Fuchs, 1978; Miles et al.,

1980; Stone and Lisberger, 1990; Büttner-Ennever

and Horn, 1996; Simpson et al., 1996; Voogd et al.,

1996). Moreover, experimental studies of oculomotor

plant compensation in primate indicate that the

process uses retinal slip, and depends upon the

integrity of the flocculus (Optican and Miles, 1985;

Optican et al., 1986).

The internal structure of the cerebellar flocculus C

was modeled as an adaptive linear filter (Widrow and

Stearns, 1985), perhaps the simplest possible imple-

mentation of the Marr–Albus ideas (Gilbert, 1974;

Fujita, 1982). The structure of the adaptive linear

filter is as shown in Fig. 2, with the constraints that

the decomposition of mossy-fiber inputs into parallel-

fiber signals, and the weighted recombination of

those signals were both linear processes. In the

version of the model described here, the components

of the mossy-fiber signal were the original motor-

command signal delayed by successive amounts

(0.02 s between each component, 100 components).

The plant P was a first-order system with time

constant¼ 0.2 s, as illustrated in Fig. 3. Although this

is a simple approximation to the complexities of the

real plant, it has nonetheless proved very useful in

a range of modeling applications (Robinson, 1981).

The brainstem B, intended to represent the medial

vestibular nucleus and nucleus prepositus hypoglossi,

had two components (details in Appendix). Their

characteristics were intended to match those dis-

played after lesions of the flocculus in primate

(Zee et al., 1981; Rambold et al., 2002). One was a

direct pathway with a gain that accurately matched

the head-velocity input to the eye-velocity output at

high (>1 Hz) frequencies. Thus, the basic gain of

the VOR was not stored in the flocculus itself but

in the brainstem (Luebke and Robinson, 1994;

McElligott et al., 1998; Rambold et al., 2002). The

second component was a leaky integrator with time

constant 0.5 s, to be consistent with the observation

that after cerebellar inactivation the time constant

of postsaccadic drift is longer than that obtained for

the plant alone (Carpenter, 1972; Robinson, 1974;

Zee et al., 1981; Godaux and Vanderkelen, 1984).

The performance of the brainstem controller is shown

in Fig. 5. The retinal slip found in response to the

training stimulus (head-velocity signals with a mix-

ture of frequencies) shows good compensation at

high frequencies (Fig. 5A), and indeed the gain of the

system above about 1 Hz is close to one (Fig. 5B).

After a velocity-pulse input, eye position relaxes back

to the primary position with a time constant of

about 1 s (Fig. 5C). Finally, because the brainstem

controller is insufficient on its own to produce

accurate motor commands, there are indeed correla-

tions between components of the motor command

and the subsequent sensory error, namely retinal slip

(Fig. 5D).

Results of decorrelation control

The effects of training the system just described with

the decorrelation-control algorithm are shown in

Fig. 6. Retinal slip declined rapidly at first, then more

slowly (Fig. 6A), and was still continuing to decline at

the end of 1000 trials of training (each trial¼ 5 s of

colored noise head-velocity input). At this point the

remaining slip was very slight (Fig. 6B), and the

ability of the system to hold eccentric gaze after a

velocity pulse was almost perfect (Fig. 6C). Finally,

the correlations between motor-command compo-

nents and sensory error had almost completely

disappeared (Fig. 6D).

These findings demonstrate that the decorrelation-

control algorithm is capable of learning accurate

velocity commands, and thus compensating for

the oculomotor plant, with the particular model-

ing assumptions outlined in the section on model
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structure. The next test for the algorithm is whether

it is robust, that is to say whether it can still cope

when those assumptions are relaxed. The following

assumptions were investigated.

(i) There are still uncertainties about the precise

characteristics of the brainstem controller B

(De Zeeuw et al., 1995). We tested the extreme

case of having no brainstem controller at all

(i.e. B set to a gain of 1) Although learning was

slow, eventual convergence was good and the

asymptotic performance for both retinal slip

and eccentric gaze resembled that shown in

Fig. 6. Thus, the success of the decorrelation-

control algorithm does not depend on the pre-

cise characteristics of the brainstem controller.

(ii) The first-order plant used above is the simplest

dynamical system possible. What happens

when decorrelation control is confronted

with a more realistic model plant? We

approached this question in two ways. First,

we replaced the single-element plant of Fig. 3

with a two-element model (details in Appendix),

of the kind suggested by behavioral and

electrophysiological data (Optican and Miles,

1985; Optican et al., 1986; Fuchs et al., 1988;

Stahl, 1992; Goldstein and Reinecke, 1994;

Goldstein et al., 2000). This plant shows sub-

stantially more complex behavior and requires

more sophisticated control, including a ‘slide’

of innervation after a velocity pulse (Optican

and Miles, 1985; Goldstein and Reinecke,

1994; Goldstein et al., 2000). Nonetheless,

the decorrelation-control algorithm was able

to learn to compensate a two-element plant

(Fig. 7, details in legend). Secondly, the learning

Fig. 5. Performance of the model before training, with a first-order plant P (time constant¼ 0.2 s). The brainstem controller B was a

leaky integrator with time constant 0.5 s and accurate high-frequency gain. (A) Head velocity and retinal slip. The colored-noise head-

velocity signal (root-mean-square amplitude 1�/s) produced a relatively smooth retinal slip signal. (B) The reason for the smoothing is

evident from the Bode plot of VOR gain against frequency of head velocity. For frequencies above about 1 Hz the VOR gain is close to

1.0, because of the properties of the brainstem controller. (C) Eye-position response of system to a head-velocity pulse (equivalent to

head-position step, and similar to a saccadic eye-movement command). The eye position returns to its initial value with a time course

determined by the characteristics of both the plant and the brainstem controller. (D) The correlations present between delayed versions

of the eye-movement command and retinal slip, measured over a period of 500 s (modified from Dean et al., 2002).
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properties of the configuration shown in Fig. 4

were analyzed mathematically (Porrill et al.,

2003). The analysis revealed that the synaptic

weights becomemore accurate as long as output

errors are being made. Thus, the algorithm

is guaranteed to learn to compensate for any

plant (subject to certain technical limitations).

The crucial point is that the system operates

in ‘feedback’ mode, i.e. a copy of the motor

command is fed back to the cerebellum. This

general result is important, not least for the

specific case of oculomotor plant compen-

sation where a variety of data suggest that the

oculomotor plant may contain at least three

viscoelastic elements (Robinson, 1965; Sklavos

et al., 2002). The mathematical analysis

indicates that the decorrelation-control algo-

rithm is capable of compensating for these

more complex plants.

(iii) Concerns have been expressed about the capa-

city of the climbing-fiber pathway to convey

detailed information because the maximum

firing rate of an individual fiber is rather low,

that is about 10 Hz. However, when the

decorrelation-control algorithm was tested with

a climbing-fiber signal that conveyed only the

direction of retinal-slip (not itsmagnitude) learn-

ing was still similar to that illustrated in Fig. 6.

The main difference was that final performance

needed to be improved slightly by reducing the

learning rate (� in Eq. 1) near to convergence.

(iv) A further problem with the climbing-fiber

pathway is that the retinal-slip signal it delivers

to the flocculus is delayed by about 100 ms

(Miles, 1991). Such a delay introduces instabil-

ities into the learning process if the training

data contain frequencies higher than about

2.5 Hz (see Appendix). These instabilities can be

Fig. 6. Performance of model during and after training, with a first-order plant P (time constant¼ 0.2 s) and a brainstem controller B

with a leaky integrator (time constant 0.5 s) and accurate high-frequency gain. (A) Typical decline in retinal-slip amplitude with

training. Root-mean-square retinal-slip amplitude, measured over a 5-s training trial as shown in Fig. 4A, plotted on a log scale against

number of training trials. (B) Posttraining reduction in retinal slip (note change in scale from Fig. 4A). (C) Eye-position response of

system to a head-velocity pulse. The resultant eccentric eye position is maintained. (D) The pretraining correlations between delayed

versions of the eye-movement command and retinal slip have almost disappeared (modified from Dean et al., 2002).
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avoided by what has been termed an ‘eligibility

trace’, which acts as a delay and smoothing filter

to remove high frequencies from the motor-

command components (details in Appendix).

A variety of behavioral and electrophysiological

evidence points to the existence of an eligibility

trace (Raymond and Lisberger, 1998; Wang

et al., 2000; Kehoe and White, 2002).

(v) Finally, very little is known about the way

mossy-fiber signals are decomposed into

parallel-fiber components. Our use of different

delays in the simulation described above is

essentially an educated guess. However, by

trying different schemes for decomposing

signals in the adaptive linear filter, we were

able to show that their main influence was

on the speed with which the decorrelation-

control algorithm learns, rather than its final

convergence. Suitable choice of decomposition

method could in fact speed learning very

considerably (Fig. 7). Suggestions that the

method of decomposition can itself be influ-

enced by learning (implemented for example

by synaptic plasticity between mossy fiber–

granule cell complex) have been made elsewhere

(Schweighofer et al., 2001).

To summarize, the above results indicate that in

the context of the flocculus and (linearized) oculo-

motor plant compensation, the decorrelation-control

algorithm is an effective and robust method of

ensuring that a simple velocity command into the

system generates the corresponding velocity output.

Decorrelation control and visual awareness

One of the roles suggested for the cerebellum in rela-

tion to awareness is that it carries out the ‘elaboration’

of simple motor commands issued by the forebrain,

thereby freeing the forebrain’s computational

Fig. 7. The decorrelation-control algorithm used with a second-order plant P and a leaky-integrator brainstem controller B.

(A) Learning as measured by reduction on root-mean-square retinal-slip amplitude. Note log scale on both axes. The two curves are for

decorrelators with either the ‘delay’ or the ‘spectral’ set of basis functions. The latter were an orthogonal set derived from the principal

components of compensated motor commands. The final performance of the trained filter was little affected by the basis functions

used. (B) Pre- and posttraining retinal slip in response to a colored-noise head-velocity input. (C) Pre- and post-training Bode gains for

the VOR. (D) Pre- and posttraining eye-position response to a head-velocity pulse (from Dean et al., 2002).
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resources. But it seemed that in order to learn such

elaboration, cerebellar models — at least those based

on the ideas of Marr and Albus — required a signal

that in principle could not be available, namely motor

error. However, the decorrelation control algorithm is

a possible solution to this problem, since it requires an

available signal of the sensory consequences of motor

error, not motor error itself. The results described

above indicate that for eye movements decorrelation

control used by a simplified Marr–Albus model was

effective in learning to compensate for a linearized

oculomotor plant, thus enabling higher centers to send

only simple velocity commands downstream with

consequent easing of their computational load.

The second role mentioned above for the cere-

bellum in visual awareness concerned the provision

of sensory information uncontaminated by the

organism’s own activity. In the case of oculomotor

plant compensation the sensory signal is whole-field

retinal image movement (retinal slip), potentially

contaminated by inaccurate eye-movement com-

mands. Inasmuch as decorrelation control success-

fully removes this contamination, any retinal slip

remaining is a genuine external signal. This can be seen

in a redrawing of the VOR circuitry (Fig. 4) to

emphasize its sensory-processing aspect (Fig. 8). In the

redrawn version the retinal slip that would occur if the

retina did not move can be considered as a sensory

‘target variable’. This has two components:

an external signal of interest u, combined with self-

produced interference n. What the system is trying to

do is move the sensor surface (i.e. the eye) so as to

cancel n, leaving behind the ‘real’ signal u. The eye

movement can thus be regarded as an estimate of that

interference n̂, and the resultant retinal slip an

estimate of the real signal ûu. The more accurate the

eye movement, the better the estimate ûu (so that if u

were zero, for example, there would be no retinal slip

at all). Thus, the decorrelation-control algorithm that

learns to produce accurate eye movements necessarily

produces a good estimate of the signal of interest.

Consequently, decorrelation control is a candidate

algorithm for securing both of the proposed functions

of the cerebellum in visual awareness.

Of course, many questions remain. One of the

most important concerns movements of parts of the

Fig. 8. Redrawing of the vestibulo-ocular circuitry shown in Fig. 4 to emphasize its sensory-processing aspects. Inputs to the system

are: (i) the retinal slip that would occur if the eyes remain stationary is treated as a target variable. As such it consists of an external

signal of interest u(t) corrupted by additive interference n(t); and (ii) predictor variables p(t). The task of the system is to extract an

estimate of the signal of interest û(t) from the target variable. It does so by subtracting from the target variable an estimate n̂(t) of the

interference, in this case by physically moving the eye. Sensor output is no longer the target variable u(t)þ n(t) but the estimate û(t) of

the signal of interest u(t). The decorrelator must therefore learn the motor command m(t) which will act on the plant to produce the

appropriate interference estimate (from Dean et al., 2002).
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body other than the eyes. Unfortunately, control of

multijoint movements is more complex than eye-

movement control, and less is known about the

anatomical details of the projections of cerebellar

microzones to and from the relevant premotor

circuitry in cortex, brainstem, and spinal cord.

However, the mathematical analysis of decorrelation

control indicated that it was in principle capable of

compensating for very complex plants provided a

copy of the motor command was made available to

the relevant region of the cerebellum. It is therefore

interesting that Eccles (1973) supposed this to be the

case for motor cortex itself (the basis of his ‘dynamic

loop’ hypothesis). More recently anatomical investi-

gations using transneuronal transport methods have

indicated that a given area of cerebral cortex which

projects to cerebellar cortex via the pons receives

a projection back from that selfsame region of

cerebellar cortex via the thalamus. These ‘‘closed-

loop circuits may be a fundamental feature of

cerebellar interactions with the cerebellar cortex’’

(Middleton and Strick, 2000, p. 240). It is possible

therefore that the closed-loop arrangements required

by decorrelation control are characteristic not just of

eye movements but of movements in general.

Further investigation of cerebro-cerebellar con-

nectivity is but one example of the extensive work

required to establish decorrelation control (or any

other candidate) as the generic cerebellar method. It is

of course a form of detective work, the kind of work

of which, as this volume attests, Alan Cowey is a

master.

Appendix

The model architecture of Fig. 4 was programmed in

MATLABTM. P, V, B, and C were treated as linear

processes, allowing use of functions in the control

system toolbox. The characteristics of the linear

processes in initial training were:

(i) V was a unit gain.

(ii) P was a first-order plant, with the transfer

function Hp(s) between eye-in-head velocity eh
and motor command y given by Eq. (A1).

HpðsÞ ¼
ehðsÞ

yðsÞ
¼

s

sþ 1=Tp
ðA1Þ

where s denotes the Laplace complex fre-

quency variable and Tp the time constant of

the plant (¼ 0.2 s). (In subsequent equations

with transfer functions, the argument (s) of

transfer functions is omitted for simplicity.)

(iii) The brainstem B had the transfer function Hb

given by:

Hb ¼ Gd þ
Gi

sþ 1=Ti
ðA2Þ

corresponding to a brainstem controller with

two paths: (a) a direct path which passed the

head-velocity signal to the plant with the

correct gain (Gd¼ 1); and (b) an indirect path

in which the head-velocity signal was integrated

and passed to the plant also with the correct

gain (Gi¼ 1/Tp¼ 5). The brainstem integrator

was leaky with time constant Ti¼ 0.5 s.

(iv) The input to the adaptive filter C was split into

100 components with delays between compo-

nents of 0.02 s (2 s total). C was thus effectively

a finite impulse-response filter of length 100,

with output c(t) given by:

cðtÞ ¼
X100

i¼1

wiyiðt� 0:02iÞ ðA3Þ

where wi was the weight of component yi. The

rule for adjusting the weights was equivalent to

that given in Eq. (1) in the text. The value of

the learning-rate constant � in that equation

was adjusted to give rapid learning without

instability.

The training input to the system was a head-

velocity signal modeled as colored noise with unit

power. The power had its peak value at 0.2 Hz, then

varied with increasing frequency f as 1/f (as would

occur if white-noise head acceleration were integrated

to head velocity). For efficiency weight update was

implemented in batch mode using 5 s batches of

head-velocity data.

After training with the basic system described

above, a number of variants were investigated.

(i) Variants of B: The integrator pathway was

removed (Eq. A2, with Gi¼ 0).
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(ii) Variants of P: A second-order version of P was

used with transfer function Hp given by:

Hp ¼
sðsþ 1=TzÞ

ðsþ 1=T1Þðsþ 1=T2Þ
ðA4Þ

where T1¼ 0.37 s, T2¼ 0.057 s, Tz¼ 0.2 s, taken

from Stahl’s estimate (Stahl, 1992, p. 361) of

the best-fit two-pole one-zero transfer function

(for eye position from eye-movement com-

mand) to the data of Fuchs et al. (1988). This

plant was combined with a leaky undergained

integrator (Eq. A2, with Gi¼ 5.05, Ti¼ 0.5).

(iii) Learning rule: The learning rule was changed

from that shown in Eq. (1) to:

�wi ¼ �� sign eðtÞ½ �yiðtÞ ðA6Þ

and used to train an adaptive filter C with a

first-order plant (Eq. A1) and a leaky under-

gained brainstem controller (Eq. A2, Gi¼ 2.5,

Ti¼ 0.5).

(iv) Delay: The retinal-slip signal arriving at C was

delayed by d¼ 100 ms. The system was trained

with a first-order plant (Eq. A1) and a leaky

undergained brainstem controller (Eq. A2, with

Gi¼ 2.5, Ti¼ 0.5). It was found that the delay

caused unstable learning if the input to C

contained frequencies above 1/4d (at these

frequencies the input becomes >90� out of

phase with the retinal-slip signal). The compo-

nents yi(t) were therefore convolved with an

‘eligibility trace’ r(t). The equation for the

eligibility trace was taken from Eqs. (11) and

(12) of Kettner et al. (1997):

rðtÞ / t e�ðt=tpeakÞ ðA5Þ

where tpeak was set to 0.1 s.

(v) Basis functions: The different delays used as

basis functions for the mossy-fiber input y(t)

were subsequently replaced by alternative func-

tions. These included sine waves of different

frequencies and decaying exponentials of differ-

ent time constants, as well as basis functions that

were orthogonalized with respect to the motor

commands themselves. One method of achieving

this was by spectral decomposition, in which the

motor outputs for a perfectly compensated first-

order plant were subjected to principal compo-

nent analysis. The 100 eigenvectors derived from

the analysis were then used as basis functions.

Learning was examined for the second-order

plant with leaky undergained brainstem

controller (variant 2 above).
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